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An exact three-dimensional elastodynamic analysis for describing the natural

oscillations of a freely suspended, isotropic, and homogeneous elastic sphere with an

eccentrically located inner spherical cavity is developed. The translational addition

theorem for spherical vector wave functions is employed to impose the zero traction

equations involving spherical Bessel functions and Wigner 3j symbols. Extensive

numerical calculations have been carried out for the first five clusters of eigenfrequen-

cies associated with both the axisymmetric and non-axisymmetric spheroidal as well as

toroidal oscillation modes for selected inner-outer radii ratios in a wide range of cavity

eccentricities. Also, the corresponding three-dimensional deformed mode shapes are

illustrated in vivid graphical forms for selected eccentricities. The numerical results

describe the imperative influence of cavity eccentricity, mode type, and radii ratio on

the vibrational characteristics of the hollow sphere. The existence of ‘‘multiple

degeneracies’’ and the trigger of ‘‘frequency splitting’’ are demonstrated and discussed.

The accuracy of solution is checked through appropriate convergence studies, and the

validity of results is established with the aid of a commercial finite element package as

well as by comparison with the data in the existing literature.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of shells has been a subject of study for more than a century, since they are extensively used as
one of the basic components in civil, mechanical, aircraft, and naval structures. Many of these studies are based on classical
or thin-shell theories, which utilize the well-known simplifying Kirchhoff–Love postulates of straight inextensional
normal, making these theories inadequate for the analysis of thick shells. In recent years, the refinement of thin-shell
theories has resulted in a number of the so-called higher order shell theories based on various approximations of shear
deformation and rotary inertia associated with the transverse direction of the shell surface [1–3]. For dynamic analysis of
complex structures, thin or higher order shell theories are most appropriate, but they lose their accuracy for thick
structures, making the use of three-dimensional theory of elasticity inevitable. The high computational power
requirements being the only limiting factor, the three-dimensional theory of elasticity may advantageously be used to
accurately extract the full vibration spectrum of natural frequencies and mode shapes for simple geometries such as the
solid or hollow elastic spheres and cylinders without any missing modes. Such analysis, not only provides reliable solutions
for benchmarking purposes, but also can bring out the physical characteristics of the problem.
ll rights reserved.
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Natural vibration of freely suspended solid and thick hollow elastic spheres has long been one of the fundamental
problems in elastodynamics, originally associated with interest in the oscillations of the earth [4]. Numerous researchers
have carried out three-dimensional analysis based on the linear equations of elasticity in order to find accurate natural
frequencies for the vibrations of solid or hollow thick spheres. Restricting our attention to the purely isotropic problems,
the most important works relevant to the present study will briefly be reviewed here. The first known complete
mathematical treatment for the vibrations of an ideal isotropic elastic sphere was given by Lamb [5] in Cartesian
coordinates and by Chree [6] in the more convenient spherical coordinates. In particular, Lamb [5] presented two basic
types of free vibrations: torsional (toroidal or equivoluminal) vibrations or vibrations of the first class associated with the
rotatory motions of the sphere where there is no change in volume of the sphere and no radial displacement; and
spheroidal (pulsating or coupled bending–stretching) vibrations or vibrations of the second class which are related to
the distortion of the elastic sphere due to vibrations in the radial direction. Most of the subsequent studies were based on
the work of Lamb and driven by the interest in understanding the generation of earthquakes and their effect on earth. For
instance, Sato and Usami [7,8] performed a detailed spectral analysis and provided (tabulated) a comprehensive set
of results for the frequencies of free vibration and their corresponding displacement field distributions within vibrating
homogeneous elastic spheres. Subsequently Shah et al. [9] studied the free vibrational behavior of hollow spheres by using
an exact three-dimensional analysis to obtain a characteristic equation solvable in terms of spherical Bessel functions of
the first and second kind and gave numerical results for a wide range of thickness to radius ratios in graphical form.
Extensive work on the vibration of spheres including complicating effects, such as anisotropic material properties, liquid
core, multi-layers and self-gravitation effects, has been carried out by numerous researchers. An excellent reference on the
subject is the very readable book by Lapwood and Usami [10]. Hosseini-Hashemi and Anderson [11] examined issues of
normalization of the torsional vibration characteristics of solid elastic spheres and presented three-dimensional diagrams
for the surface displacement of the toroidal modes. Heyliger and Jilani [12] used the Ritz method to verify the results of
Sato and Usami [7,8] for isotropic spheres and gave some results for inhomogeneous spheres as well as an excellent list
of references. Kumbasar [13] used three-dimensional elastodynamic equations to study free vibrations of complete thick
spherical shells. Chang and Demkowicz [14] determined natural frequencies of a vibrating hollow, elastic sphere using
both the 3D elasticity and Kirchhoff shell theory. McGee and Spry [15] used a complete set of algebraic trigonometric
polynomials to approximate the radial, meridional, and circumferential displacements (via Ritz method) to address the
spheroidal and toroidal elastic vibrations of thick-walled, spherical bodies of revolution based on the three-dimensional
theory of elasticity in curvilinear coordinates. Chau [16] used two scalar wave potentials to derive the exact frequency
equation and numerical results for only the toroidal mode of vibrations for a spherically isotropic elastic sphere. Buchanan
and Rich [17] formulated a finite element model to study the effects of the boundary conditions on free vibration of thick
isotropic spherical shells. Saviot and Murray [18] presented a qualitative distinction between different spheroidal modes of
vibration of a free continuum elastic sphere. Duffey et al. [19] compared natural frequencies and mode shapes obtained
from axisymmetric and non-axisymmetric theories of vibration of complete free spherical shells with those from finite
element computer simulations with and without geometrical imperfections.

Analytical solutions of interior or exterior boundary value problems in different fields such as potential theory,
acoustics, elastodynamics, and electromagnetism are stringently dependent on the shape of boundaries. In particular,
when multiple (eccentric) interfaces are present in a wave field, there is an interaction between them due to cross
scattering. The theoretical basis for the solution of the wave interaction problems involving eccentric spherical boundaries
was set by Friedman and Russek [20], Stein [21] and Cruzan [22], who provided the translational addition theorems for
spherical wave functions. After that, several researchers have studied the eccentric sphere problem. Among them,
Golovchan [23] considered axisymmetric forced oscillations of (dynamic stress concentrations within) an elastic sphere
with a non-concentric inner cavity under the action of a uniform external pressure. Kanellopoulos and Fikioris [24]
obtained the natural frequencies for the scalar interior boundary value problem in the acoustic region between two
eccentric spherical surfaces, for both Neumann and Dirichlet boundary conditions. Roumeliotis et al. [25] and Roumeliotis
and Kanellopoulos [26] employed a special shape perturbation method to derive analytical expressions for the acoustic
resonance frequency shifts in a hard- (soft-) walled spherical cavity, caused by introduction of an eccentric small inner
sphere. Roumeliotis et al. [27] used spherical vector wave functions and related addition theorems to derive analytical
expressions for the resonant frequencies in an electromagnetic spherical cavity with an eccentric inner electrically small
and perfectly conducting sphere for both the magnetic and electric modes. Roumeliotis et al. [28] used the classical method
of separation of variables combined with translational addition theorems for spherical vector wave functions to treat the
scattering of a plane electromagnetic wave from a metallic or dielectric sphere of electrically small radius, embedded into a
dielectric one. Cottis and Moyssidis [29] investigated the effect of eccentricity on the complex resonances of a conducting
sphere eccentrically coated by a dielectric one. Charalambopoulos et al. [30] used the elasticity theory in conjunction with
the bispherical coordinates system to study the effect of the thickness nonuniformities of the human dry skull (modeled by
an isotropic elastic material occupying the region bounded by two non-concentric spheres) on its frequency spectrum.
Their analysis is however independent of the azimuthal coordinate (i.e., perfectly axisymmetric), and is only valid for small
deviations of the system from the concentric case. Ioannidou and Chrissoulidis [31] obtained an exact solution to the
problem of electromagnetic-wave scattering from a sphere with an arbitrary number of non-overlapping spherical
inclusions by use of the indirect mode-matching technique. Videen [32] derived the scattered fields from a spherical body
eccentrically located within an otherwise homogeneous host sphere due to an arbitrarily positioned seismic source,



Fig. 1. The problem geometry.
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composed of any linear combination of S and P waves. Hasheminejad and Azarpeyvand [33] offered an exact study on
radiation of an acoustic field due to modal vibrations of a spherical source, eccentrically positioned within a thermoviscous
fluid sphere, into an external boundless viscous thermally conducting fluid medium. Moneda and Chrissoulidis [34]
developed an exact, analytical solution to the problem of electric point source radiation in the presence of a sphere with an
eccentric spherical inclusion (cavity) by combined use of the dyadic Green’s function formalism and the indirect mode-
matching technique. Han et al. [35] utilized the rotational addition theorems for spherical vector wave functions in
conjunction with the approach of the localized approximation to investigate the far-field electromagnetic-wave scattering
of an eccentric sphere arbitrarily located in a shaped optical beam. Just recently, Yan et al. [36] employed addition theorem
for spherical vector wave functions to study the interaction between a Gaussian beam and an arbitrarily positioned sphere
with an eccentric inclusion in the framework of generalized Lorenz–Mie theory (GLMT).

The above review clearly indicates that, while there exists a notable body of acoustic- or electromagnetic-oriented
literature tackling the eccentric sphere problem, a rigorous three-dimensional elastodynamic (free vibration) analysis of
this problem (see Fig. 1) appears to be nonexistent. Accordingly, the main purpose of the current work is to employ the
translational addition theorem for spherical vector wave functions [22] along with the appropriate orthogonal series
expansions and the pertinent boundary conditions to develop an exact three-dimensional elasticity solution for the
anticipated problem. The proposed full three-dimensional model can support a rich variety of oscillation modes which is of
fundamental interest as a canonical problem in structural dynamics. The presented exact solution can form an invaluable
guide for design engineers in assessing the effects of introducing cavity eccentricity (shell wall non-uniformity) on the
frequency response of such structures in various physical and technological applications [30,37–39]. It can particularly
complement experimental procedures for detection or identification of internal nonuniformities in precision spherical
components, as an effective means to characterize and control the quality of the specimen [40–42]. The accurately
extracted full vibration spectrum of natural frequencies and mode shapes can serve as the benchmark for the evaluation of
other solutions obtained by merely numerical or approximate approaches [43]. It can also serve as the prerequisite to
examining the transient response characteristics of eccentric elastic spheres [44].
2. Formulation

2.1. Basic field equations

The elastic material under consideration is assumed to be linear, macroscopically homogeneous, and isotropic. In the
absence of body forces, the displacement field is governed by the classical Navier’s equation [45]

r @
2u

@t2
¼ mr2uþðkþlÞ=ð=UuÞ, (1)

subject to the appropriate boundary conditions. Here, (l,m) are Lame constants, r is the solid material density, and u is the
vector displacement that can advantageously be decomposed as the sum of an irrotational part u0, corresponding to a
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compressional wave, and a solenoidal part u00, corresponding to a shear wave [9]:

u¼ uuþu00, (2)

where r �u00=0, r�u0=0. The above decomposition enables one to separate the dynamic equation of motion (1) into the
decoupled vector Helmholtz equations:

r2uuþa2uu¼ 0,

r
2u00 þb2u00 ¼ 0, (3)

where r2 is the Laplacian, a2 ¼o2=c2
p , b2

¼o2=c2
s , and c2

p ¼ ðlþ2mÞ=r and c2
s ¼ m=r are the propagation velocities of

dilatational and distortional waves in the elastic medium, respectively. The solutions of the vector Helmholtz equations (3)
may be written as [9]

uu¼ L¼rj
u00 ¼MþN¼r � ðerrcÞþr �r � ðerrwÞ (4)

where the displacement potentials ðj,c,wÞ satisfy the scalar Helmholtz equations:

ðr
2
þa2Þj¼ 0,

ðr
2
þb2
Þðc,wÞ ¼ 0: (5)

2.2. Field expansions and boundary conditions

The problem geometry is depicted in Fig. 1. Two spherical coordinate systems (r1,y1,f1) and (r2,y2,f2) are introduced as
shown in the figure to describe the elastic field within the eccentric sphere. The spherical coordinates have same
meridional angle f1=f2=f. Their origin-to-origin separation is e, and point P is an arbitrary field point within the eccentric
sphere, outside the spherical cavity. Keeping the decomposition (2) in mind, while taking advantage of the solutions of the
scalar Helmholtz equations (5) in (4), the field expansions for the displacement components within the eccentric sphere
may be written with respect to the (r1,y1,f) coordinate system as [46]

uðr1,y1,f,oÞ ¼
X1
n ¼ 0

Xn

m ¼ �n

½anmL½1�mnðr1,y1,f,oÞþbnmL½2�mnðr1,y1,f,oÞþcnmM½1�mnðr1,y1,f,oÞ

þdnmM½2�mnðr1,y1,f,oÞþenmN½1�mnðr1,y1,f,oÞþ fnmN½2�mnðr1,y1,f,oÞ� (6)

where anm through fnm are unknown modal coefficients, and the appropriate expressions for L½i�mnðrj,yj,f,oÞ, M½i�mnðrj,yj,f,oÞ
and N½i�mnðrj,yj,f,oÞðj,i¼ 1,2Þ are given in Appendix A [46]. Consequently, the relevant displacement components are written
in the form

urðr1,y1,f,oÞ ¼
X1
n ¼ 0

Xn

m ¼ �n

½anmV ½1�1nþbnmV ½2�1n þenmV ½1�3nþ fnmV ½2�3n �P
m
n ðcosy1Þe

imf,

uyðr1,y1,f,oÞ ¼
X1
n ¼ 1

Xn

m ¼ �n

ðcnmV ½1�5n þdnmV ½2�5n Þ
i m

siny1
Pm

n ðcosy1ÞþðanmV ½1�4n þbnmV ½2�4nþenmV ½1�6n þ fnmV ½2�6n Þ
@Pm

n ðcosy1Þ

@y1

� �
ei mf,

ufðr1,y1,f,oÞ ¼
X1
n ¼ 1

Xn

m ¼ �n

�ðcnmV ½1�5nþdnmV ½2�5n Þ
@Pm

n ðcosy1Þ

@y1
þðanmV ½1�4nþbnmV ½2�4n þenmV ½1�6nþ fnmV ½2�6n Þ

i m

siny1
Pm

n ðcosy1Þ

� �
ei mf,

(7)

where i¼
ffiffiffiffiffiffiffi
�1
p

, Pm
n are the associated Legendre functions [47], and V ½k�in ðrj,oÞ ði¼ 1,2,. . .,6; j,k¼ 1,2Þ are given in Appendix

B. Also, the stress tensor may be written in terms of the displacement vector as [45]

r¼ lð=UuÞIþmðruþurÞ (8)

where I is the unitary dyadic. Therefore, the pertinent stress components can be written in the form

srrðr1,y1,f,oÞ ¼
X1
n ¼ 0

Xn

m ¼ �n

½anmS½1�1nþbnmS½2�1nþcnmS½1�2nþdnmS½2�2nþenmS½1�3nþ fnmS½2�3n�P
m
n ðcosy1Þe

i mf,

sryðr1,y1,f,oÞ ¼
X1
n ¼ 1

Xn

m ¼ �n

ðcnmS½1�5nþdnmS½2�5nÞ
i m

siny1
Pm

n ðcosy1ÞþðanmS½1�4nþbnmS½2�4nþenmS½1�6nþ fnmS½2�6nÞ
@Pm

n ðcosy1Þ

@y1

� �
ei mf,

srfðr1,y1,f,oÞ ¼
X1
n ¼ 1

Xn

m ¼ �n

�ðcnmS½1�5nþdnmS½2�5nÞ
@Pm

n ðcosy1Þ

@y1
þðanmS½1�4nþbnmS½2�4nþenmS½1�6nþ fnmS½2�6nÞ

i m

siny1
Pm

n ðcosy1Þ

� �
ei mf,

(9)

where the expressions for S½k�in ðrj,oÞ ði¼ 1,2,. . .,6; j,k¼ 1,2Þ are given in Appendix B.
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The natural frequencies and the unknown Fourier coefficients may be determined by imposing the proper boundary
conditions. Accordingly, assuming traction-free inner and outer surfaces, one can write (see Fig. 1)

srrðr1 ¼ a,y1,f,oÞ ¼ sryðr1 ¼ a,y1,f,oÞ ¼ srfðr1 ¼ a,y1,f,oÞ ¼ 0, (10a)

srrðr2 ¼ b,y2,f,oÞ ¼ sryðr2 ¼ b,y2,f,oÞ ¼ srfðr2 ¼ b,y2,f,oÞ ¼ 0: (10b)

Using (9) along with the classical orthogonality properties of spherical harmonics and their derivatives with respect to
the yj-coordinate [48] in (10a), after some relatively tedious manipulations, one obtains two distinct sets of equations for
the meridional mode numbers m=0 and ma0 at r1=a:

m=0:

an0S½1�1nða,oÞþbn0S½2�1nða,oÞþen0S½1�3nða,oÞþ fn0S½2�3nða,oÞ ¼ 0,

an0S½1�4nða,oÞþbn0S½2�4nða,oÞþen0S½1�6nða,oÞþ fn0S½2�6nða,oÞ ¼ 0, cn0S½1�5nða,oÞþdn0S½2�5nða,oÞ ¼ 0, (11)

where n¼ 0,1,2,. . ..
ma0:

anmS½1�1nða,oÞþbnmS½2�1nða,oÞþenmS½1�3nða,oÞþ fnmS½2�3nða,oÞ ¼ 0, (12a)

i mL1ða,n,m,oÞþL2ða,nþ1,m,oÞkðnþ1,mÞþL2ða,n�1,m,oÞgðn�1,mÞð1�dnmÞ ¼ 0, (12b)

i mL2ða,n,m,oÞ�L1ða,nþ1,m,oÞkðnþ1,mÞ�L1ða,n�1,m,oÞgðn�1,mÞð1�dnmÞ ¼ 0, (12c)

where n=m, m+1, m+2, y . Also, the expressions for (L1,L2,k,g) along with the procedure for enforcement of the last two
boundary conditions in (10a) for the case ma0 (i.e., obtaining Eqs. 12b and 12c) is outlined in the Appendix C. On the other
hand, exact satisfaction of the outer boundary condition (10b) is a far more intricate matter, which will be achieved next by
application of the translational addition theorem for the spherical vector wave functions.

2.3. Translational vector addition theorem

Many problems involve wave fields of one characteristic shape (coordinate system) that interact with a boundary of
some other shape (coordinate system). So it is difficult to satisfy the boundary conditions on that surface. There exists,
however, a particular class of mathematical relationships called translational addition theorems that circumvent this
difficulty in many cases by allowing one to study various wave fields with respect to a common origin. To fulfill
orthogonality in the current problem (see Fig. 1), we shall employ Cruzan’s [22] formulation of translational addition
theorem for spherical vector wave functions to expand solutions of the vector Helmholtz equations with respect to the first
coordinate system (r1,y1,f) (i.e., Eq. (6)) in terms of the second coordinate system (r2,y2,f). Noting that the two spherical
coordinate systems share the same z-axis (see Fig. 1), after some manipulations, Cruzan’s formulation can favorably be
simplified for the given problem in the form (see also [49]):

L½j�mnðr1,y1,f,oÞ ¼
X1
n ¼ m

Zmn
mn ðe,oÞL½j�mnðr2,y2,f,oÞ

M½j�mnðr1,y1,f,oÞ ¼
X1
n ¼ m

Qmn
mn ðe,oÞM½j�mnðr2,y2,f,oÞþRmn

mnðe,oÞN½j�mnðr2,y2,f,oÞ

N½j�mnðr1,y1,f,oÞ ¼
X1
n ¼ m

Qmn
mn ðe,oÞN½j�mnðr2,y2,f,oÞþRmn

mnðe,oÞM½j�mnðr2,y2,f,oÞ (13)

where r24e, j=1,2, and the pertinent expressions for the translation coefficients ðZmn
mn , Qmn

mn , Rmn
mnÞ are given in Appendix D.

Accordingly, the expansions (13) can be utilized in (6) in order to express the field displacement with respect to second
coordinate system as

uðr2,y2,f,oÞ ¼
X1
n ¼ 0

Xn

m ¼ �n

½AnmL½1�mnðr2,y2,f,oÞþBnmL½2�mnðr2,y2,f,oÞþCnmM½1�mnðr2,y2,f,oÞ

þDnmM½2�mnðr2,y2,f,oÞþEnmN½1�mnðr2,y2,f,oÞþFnmN½2�mnðr2,y2,f,oÞ� (14)

where expressions for the coefficients Anm(e,o) through Fnm(e,o) are given in Appendix E. Also, direct substitution of field
expansions (14) into the stress–displacement relation (8), leads to the expressions for stress components with respect to
the second coordinate system:

srrðr2,y2,f,oÞ ¼
X1
n ¼ 0

Xn

m ¼ �n

AnmS½1�1nþBnmS½2�1nþCnmS½1�2nþDnmS½2�2nþEnmS½1�3nþFnmS½2�3n

h i
Pm

n ðcosy2Þe
i mf,

sryðr2,y2,f,oÞ ¼
X1
n ¼ 1

Xn

m ¼ �n

ðCnmS½1�5nþDnmS½2�5nÞ
i m

siny2
Pm

n ðcosy2ÞþðAnmS½1�4nþBnmS½2�4nþEnmS½1�6nþFnmS½2�6nÞ
@Pm

n ðcosy2Þ

@y2

� �
ei mf,



S.M. Hasheminejad, Y. Mirzaei / Journal of Sound and Vibration 330 (2011) 229–244234
srfðr2,y2,f,oÞ ¼
X1
n ¼ 1

Xn

m ¼ �n

�ðCnmS½1�8nþDnmS½2�8nÞ
@Pm

n ðcosy2Þ

@y2
þðAnmS½1�7nþBnmS½2�7nþEnmS½1�9nþFnmS½2�9nÞ

i m

siny2
Pm

n ðcosy2Þ

� �
ei mf,

(15)

At this point, by going through the same procedure as for enforcement of the inner boundary condition (10a), one can
impose the outer surface condition (10b) to obtain the following complementary equations for the meridional mode
number m=0 and ma0 at r2=b:

m=0:

An0S½1�1nðb,oÞþBn0S½2�1nðb,oÞþEn0S½1�3nðb,oÞþFn0S½2�3nðb,oÞ ¼ 0,

An0S½1�4nðb,oÞþBn0S½2�4nðb,oÞþEn0S½1�6nðb,oÞþFn0S½2�6nðb,oÞ ¼ 0,

Cn0S½1�5nðb,oÞþDn0S½2�5nðb,oÞ ¼ 0, (16)

For n=0,1,2, y;.
ma0:

AnmS½1�1nðb,oÞþBnmS½2�1nðb,oÞþEnmS½1�3nðb,oÞþFnmS½2�3nðb,oÞ ¼ 0,

imG1ðb,e,n,m,oÞþG2ðb,e,nþ1,m,oÞkðnþ1,mÞþG2ðb,e,n�1,m,oÞgðn�1,mÞð1�dnmÞ ¼ 0,

imG2ðb,e,n,m,oÞ�G1ðb,e,nþ1,m,oÞkðnþ1,mÞ�G1ðb,e,n�1,m,oÞgðn�1,mÞð1�dnmÞ ¼ 0, (17)

where n=m, m+1, m+2, y; and

G1ðb,e,n,m,oÞ ¼ CnmS½1�5nðb,oÞþDnmS½2�5nðb,oÞ,
G2ðb,e,n,m,oÞ ¼ AnmS½1�4nðb,oÞþBnmS½2�4nðb,oÞþEnmS½1�6nðb,oÞþFnmS½2�6nðb,oÞ

Now, simultaneous solutions of infinite-order systems (11) and (16) for m=0, and (12) and (17) for ma0, are,
respectively, required for complete dynamic characterization of the problem. For the m=0 mode, taking n=0,1,2, y, N, the
linear system of Eqs. (11) and (16) may advantageously be truncated into the matrix form:

T0c0 ¼ 0, (18)

where T0 is a (6N+1)� (6N+1) square matrix that contains extremely complicated frequency-dependent parameters which
multiply the modal vector c0, and

c0 ¼ ½a00,b00,c00,d00,e00,f00; a10,b10,c10,d10,e10,f10; . . .; aN0,bN0,cN0,dN0,eN0,fN0�
T

Similarly, for the ma0 mode, taking n=m, m+1, m+2, y, m+N, the linear system of Eqs. (12) and (17) may expediently
be truncated into the matrix form:

Tmcm ¼ 0, (19)

where Tm is a 6N�6N square matrix that contains extremely complicated frequency-dependent parameters which
multiply the modal vector cm, and

cm ¼ ½amm,bmm,cmm,dmm,emm,fmm; aðmþ1Þ,m,bðmþ1Þm,cðmþ1Þm,dðmþ1Þm,eðmþ1Þm,fðmþ1Þm;

. . .; aðmþNÞm,bðmþNÞm,cðmþNÞm,dðmþNÞm,eðmþNÞm,fðmþNÞm�
T

Lastly, for nontrivial solutions of systems (18) and (19), the associated determinants, 9T09 and 9Tm9 must, respectively,
be set equal to zero, leading to the final frequency equations. The resonant frequencies must be obtained numerically by
searching for the real roots of these equations. Here, it is noteworthy that in the concentric sphere case (e=0) with m=0,
the oscillation equations (18) may readily be decoupled into two independent systems of equations representing the
purely spheroidal and purely toroidal modes, and that these equations get coupled only through the effects of introducing
eccentricity. For ma0 (non-axisymmetric) modes, on the other hand, the specially complex internal structure of the
truncated oscillation equations (19) does not allow decoupling into two independent systems of equations corresponding
to the spheroidal and toroidal modes, even in the concentric case. This completes the necessary background required for
exact analysis of the problem. Next, we consider some numerical examples.

3. Numerical results

In order to illustrate the nature and general behavior of solution, we consider a number of numerical examples in this
section. A Mathematica code [50] was constructed for numerical treatment of the systems (18) and (19), i.e., to calculate
the resonance frequencies and to determine the unknown Fourier coefficients (mode shapes) as a function of
the dimensionless (cavity) eccentricity parameter e¼ ðb�aÞ=b. In particular, a simple and very efficient root finding
technique based on the bisection approach is employed to determine the roots of the characteristic equations
(9T09=0,9Tm9=0), by performing tedious frequency sweeping with extremely small frequency steps for detection of the
value of the frequency parameters that cause the determinant to change sign. This procedure was repeated for all
eccentricities using very small eccentricity steps ðDe� 1%Þ. This way, any remaining missing frequencies were identified
and immediately included. Also, after finding the roots of the characteristic equations by the above mentioned procedure,
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each root is substituted back into the coefficient matrices (T0,Tm) and the corresponding eigenvector is obtained by using
the powerful Mathematica built-in function ‘‘Nullspace.’’ The computations were performed on a network of personal
computers with a maximum truncation constant of nmax=nmax=N=30 to assure convergence in the high frequency range,
and also in case of high core eccentricity. The convergence of numerical solutions were systematically checked in a simple
trial and error manner, by increasing the truncation constant (i.e., including higher number of modes) while looking for
steadiness or stability in the numerical value of the solutions.

Figs. 2 through 4 display the variation of the first five clusters of dimensionless natural frequencies (O=ob/cp) with the
eccentricity parameter 0re¼ ðb�aÞ=br0:9 for the selected inner–outer radius ratios of a/b=0.2,0.5,0.9. The associated
root or cluster number (l), and the azimuthal and meridional mode numbers (n,m) are also specified. Also, the frequency
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Fig. 2. The variation of the first five clusters of dimensionless natural frequencies (O=ob/cp) with the eccentricity parameter along with the relevant

convergence analysis for the selected inner–outer radius ratios of a/b=0.2.
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spectrum clusters associated with the purely spheroidal and purely toroidal oscillation modes in the concentric sphere
situation, are specified with the letters ‘‘S’’ and ‘‘T’’, respectively. Also shown in lower right corner of each figure is the
corresponding variation of the first few clusters of natural frequencies with the truncation constant, N, for the most critical
situation, i.e., for the sphere with the highest eccentricity ðe¼ 90%Þ: Here, it is clear that the adopted truncation constant of
Nmax=30 well assures the adequate convergence of all calculated natural frequencies. The modal spectrums of eccentric
spheres exhibit very unique characteristics. In the absence of eccentricity (e=0), the spheroidal and toroidal modes are
completely decoupled [15], and for each value of n (azimuthal number) and l (root or ‘‘cluster’’ number), because of the
perfect azimuthal and meridional symmetries, a total of 2n+1 perfectly repeated fully degenerate (multiplet) frequencies is
observed (i.e., there is 2n+1-fold degeneracy; see Ref. [19]). For example, considering the fifth frequency cluster associated
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with the purely spheroidal mode in the concentric case (l=5; n=3S), there is a total of 2n+1=7 fully degenerate frequencies,
with m=0,71, 72,73.

The eccentricity parameter inflicts characteristically different effects on natural frequencies depending on the radii ratio
and mode number. In particular, as the cavity becomes eccentric (i.e., the azimuthal symmetry is lost; see Fig. 1), the
problem is no longer fully degenerate, and n+1 of these 2n+1 repeated vibration frequencies split into distinct
eigenfrequencies. However, n frequencies within the 2n+1 frequencies remain two-fold degenerate (i.e., we get the
so-named paired eigenmodes: m= 71, 72,73,...). For example, reconsidering the fifth frequency cluster (l=5;n=3S) in
Fig. 2, the previously 2n+1=7 fully degenerate frequencies in the concentric case, now form a cluster with n+1=4 distinct
branches, n=3 of which are two-fold degenerate (i.e., m=71, 72, 73). Also, it is clear from the various subplots in each
figure that besides splitting of eigenfrequencies, the numerous crossovers of different branches occur. In particular, one can
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clearly observe internal crossovers between clusters I, III, IV, V in Fig. 2; internal crossovers between clusters II, III, V and
external crossovers between clusters IV,V in Fig. 3; internal crossovers in cluster V and external crossovers between
clusters II, III, and IV, V in Fig. 4. Also, it appears that the number of (internal) frequency crossover points increases as the
radii ratio is decreased. At these crossovers, corresponding to specific eccentricities, the previously split eigenfrequencies
become degenerate. This implies that beyond the crossover eccentricity, the stiffness of structure in one vibration mode
will interchange place with another. Furthermore, it is interesting to note that, regardless of radii ratio, the frequency
spectrum curve associated with the n=0 (breathing) mode remains single-valued in the entire range of eccentricity (e.g.,
see Fig. 3; cluster IV). In other words, there is a single non-degenerate frequency associated with the breathing mode
regardless of cavity eccentricity. Moreover, comparison of Figs. 2 through 4 indicates the general increase of the natural
frequency with the increase of shell wall thickness. Lastly, it appears that the largest overall shift in natural frequencies due
to the increase in eccentricity occurs at highest radii ratio (a/b=0.9).

Fig. 5 displays the three dimensional deformed mode shapes associated with the first five clusters of dimensionless
frequencies for selected eccentricity parameters ðe¼ 0, 30, 60, 90%Þ. Also, the associated natural frequencies are listed in
Table 1. Comments very similar to above remarks can readily be made. The main distinctions are as follows. Here it is clear
that for a fixed azimuthal mode number n and increasing order (meridional mode number) �nrmrn, there are a total of
2n+1 modes, n+1 of which are perfectly distinct. Among this n+1 perfectly distinct modes, n modes which occur in pairs
are identical in shape differing only in orientation (note that the rotated mode shapes are not shown in the figures for
brevity). This means that, when m=0 there is only one associated mode shape and when ma0 there are two independent
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Fig. 5. Selected three dimensional deformed mode shapes associated with the first five clusters of dimensionless frequencies for various eccentricity

parameters.
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mode shapes occurring in pairs with the same frequency. Here, it should be reminded that, as discussed earlier, in the
concentric case all of the 2n+1 modes are linked with the fully degenerate frequencies (see Table 1), while in the eccentric
sphere situations, the n paired modes possess two-fold degenerate frequencies. Lastly, it is interesting to note that as the
cavity eccentricity increases, the geometric ‘‘imperfection’’ becomes significant, the mode shapes illustrated in the first
column of Fig. 5 ðe¼ 0Þ become gradually more corrupted. This change in deformed mode shapes, which is of maximum
effect in case of the sphere with the highest eccentricity ðe¼ 90%Þ, may directly be linked to the previously discussed
‘‘splitting’’ of originally degenerate modes.

Finally, in order to check overall validity of the work, we first used our general Mathematica code to compute the first
five clusters of natural frequencies, f=o/2p (Hz), associated with three dimensional deformed mode shapes presented in
Fig. 5, for a very thick steel sphere (a=0.1 m, b=0.2 m, E=2�1011 N/m2, r=7800 kg/m3, n=0.3). Table 1 clearly indicates
that our exact calculations exhibit excellent agreements with the numerical computations made by using the commercial
finite element code ABAQUS/Standard Version 6.6 [51]. It is noteworthy that in the latter validations, a total of about 7000
twenty-noded brick elements ‘‘C3D20R’’ of ABAQUS were used to model the eccentric sphere problem. As a further check,
we set e=0 in our general code in order to compare our calculated results with approximate numerical results presented in
Ref. [15] for a concentric hollow sphere, in which excellent agreements were found (comparisons are not displayed for
briefness). Lastly, we compared the results computed through our Mathematica code with the approximate results
presented in Ref. [30] for free (axisymmetric) vibrations of an elastic sphere of non-uniform wall thickness. Owing to
various approximations made in the latter reference, good agreements were found only for the case of extremely small
deviations from the concentric case (comparisons are not shown for brevity).



Table 1
Comparison of the analytically calculated natural frequencies, f=o/2p (Hz), with the numerical computations made by using the FEM code ABAQUS for

selected eccentricity parameters ðe¼ 0,30,60,90%Þ of a hollow steel sphere.

n m %Eccentricity

0% 30% 60% 90%

Analytical FEM Analytical FEM Analytical FEM Analytical FEM

2 0 4829.74 4829.81 4885.41 4885.53 5072.94 5073.46 5496.07 5497.54

71 4829.74 4829.94 4859.77 4859.97 4975.46 4975.74 5310.71 5308.99

4829.74 4829.94 4859.77 4859.97 4975.46 4975.74 5310.71 5309.00

72 4829.74 4830.11 4779.47 4779.87 4616.25 4616.69 4212.87 4213.30

4829.74 4830.13 4779.47 4779.88 4616.25 4616.70 4212.87 4213.30

2 0 6086.0 6086.05 6115.14 6115.12 6200.65 6200.64 6331.81 6331.81

71 6086.0 6086.15 6113.61 6113.70 6197.64 6197.73 6349.82 6349.47

6086.0 6086.15 6113.61 6113.70 6197.64 6197.73 6349.82 6349.47

72 6086.0 6086.35 6107.70 6107.98 6164.59 6164.87 6236.14 6235.97

6086.0 6086.36 6107.70 6107.99 6164.59 6164.88 6236.14 6235.97

3 0 7854.93 7855.07 7825.70 7825.86 7720.83 7720.17 7538.43 7537.32

71 7854.93 7855.27 7827.71 7828.16 7730.04 7730.54 7544.00 7540.29

7854.93 7855.27 7827.71 7828.16 7730.04 7730.54 7544.00 7540.33

72 7854.93 7855.88 7833.53 7834.60 7750.90 7752.28 7454.83 7451.09

7854.93 7855.93 7833.53 7834.67 7750.90 7752.40 7454.83 7451.1

73 7854.93 7857.05 7842.91 7845.12 7791.62 7793.86 7596.54 7596.63

7854.93 7857.05 7842.91 7845.13 7791.62 7793.86 7596.54 7596.63

0 0 9447.18 9447.32 9366.27 9366.10 9235.51 9235.75 9223.82 9213.73

0 9529.30 9529.43 9524.33 9524.46 9549.76 9549.88 9615.64 9623.64

3 71 9529.30 9529.42 9524.45 9524.57 9364.55 9364.71 9062.43 9058.01

9529.30 9529.42 9524.45 9524.57 9364.55 9364.71 9062.43 9058.03

72 9529.30 9529.88 9528.06 9528.64 9522.16 9522.74 9502.57 9501.95

9529.30 9529.94 9528.06 9528.69 9522.16 9522.79 9502.57 9501.96

73 9529.30 9530.75 9537.20 9538.63 9559.80 9552.93 9589.94 9589.91

9529.30 9530.75 9537.20 9538.63 9559.80 9552.93 9589.94 9589.91
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4. Conclusions

The translational addition theorem for spherical vector wave functions is employed to formulate the first known full 3D
exact elasticity solution for the free vibration problem of an eccentric hollow elastic sphere. Accurate extensive 3D
reference data are offered, which can serve as a benchmark to check the accuracy of various approximate theories. In
particular, the first five clusters of resonant frequencies are calculated as a function of cavity eccentricity for selected
geometric parameters. Also, selected three-dimensional deformed mode shapes are illustrated in vivid graphical forms. The
most important observations are summarized as follows.
�
 In the absence of eccentricity, the spheroidal and toroidal modes are completely decoupled, and for each value
of n (azimuthal number) and l (cluster number), due to the perfect azimuthal and meridional symmetries, there are
2n+1-fold degenerate frequencies, regardless of the meridional mode number �nrmrn.

�
 The eccentricity parameter inflicts characteristically different effects on natural frequencies depending on the radii ratio

and mode numbers. As the cavity becomes eccentric, the problem is no longer fully degenerate, and n+1 of the initial
2n+1 degenerate frequencies split into distinct frequencies. However, n frequencies within the n+1 frequencies remain
two-fold degenerate. In other words, there are n paired eigenfrequencies with m= 71, 72, 73, y, 7n and one single
frequency with m=0. In particular, for the breathing (n=0) mode, there is a single non-degenerate frequency regardless
of cavity eccentricity.

�
 Besides splitting of eigenfrequencies, several (internal/external) crossovers of different branches are observed to occur.

At these crossover eccentricities, the previously split eigenfrequencies become degenerate, and beyond the crossovers,
the stiffness of structure in one vibration mode trades place with another.

�
 The largest overall shift in the natural frequencies due to the increase in cavity eccentricity occurs at the highest radii

ratio, and there is a general rise of the eigenfrequencies with the increase of shell wall thickness.

�
 Regardless of cavity eccentricity, it is found that for each mode number n, there are a total of 2n+1 free oscillation mode

shapes with �nrmrn, n+1 of which are perfectly distinct within which n mode shapes occur in pairs (i.e., m= 71,
72, 73, y, 7n). In other words, when m=0 there is only one mode shape, while for ma0 there are two mode shapes,
occurring in pairs with the same degenerate frequency, identical in shape differing only in orientation.

�
 As the cavity eccentricity (geometric imperfection) increases, the deformed mode shapes are observed to become

gradually more corrupt, which is directly linked to the ‘‘splitting’’ of the initially degenerate eigenfrequencies.
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in which jn and yn are the spherical Bessel functions of the first and second kind [47], respectively.
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Appendix C

The derivative of associated Legendre functions may be written in the form [47]:
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By using the above expansion in second of (9), the boundary condition sry (r1=a, y1,f,o)=0 in (10a) can be rewritten as
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Next, by employing the classical orthogonality of exponential functions (see Eq. 12.141 in Ref. [48]), Eq. (C1) can be
expanded in the following form:
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Changing the order of summation, and renaming some indices, Eq. (C2) can be rewritten as

X1
n ¼ m

fi mL1ða,n,m,oÞþL2ða,nþ1,m,oÞkðnþ1,mÞ

þL2ða,n�1,m,oÞgðn�1,mÞð1�dnmÞgcscy1Pm
n ðcosy1Þ ¼ 0:

Lastly, the classical orthogonality property of the associated Legendre functions (see Eq. 12.104 in Ref. [48]) can readily
be implemented to obtain

i mL1ða,n,m,oÞþL2ða,nþ1,m,oÞkðnþ1,mÞþL2ða,n�1,m,oÞgðn�1,mÞð1�dnmÞ ¼ 0,

which is the same as Eq. (12b). Similarly, following the above procedure, satisfaction of the boundary condition
srf(r1=a,y1,f,o)=0 yields

i mL2ða,n,m,oÞ�L1ða,nþ1,m,oÞkðnþ1,mÞ�L1ða,n�1,m,oÞgðn�1,mÞð1�dnmÞ ¼ 0,

which is the same as Eq. (12c).
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ð�1Þminþs�naðn,n,sÞaðm,n,�m,n,sÞjsðbeÞ,

Rmn
mm ðe,oÞ ¼

Xnþn,2

s ¼ 9n�n9

ð�1Þmþ1inþs�nbðn,n,sÞ ~aðm,n,�m,n,s�1ÞjsðbeÞ,

where

aðn,n,sÞ ¼ ½2nðnþ1Þð2nþ1Þþðnþ1Þðnþn�sÞðnþs�nþ1Þ�nðnþnþsþ2Þ�=½2nðnþ1Þ�

bðn,n,sÞ ¼ ½ðnþnþsþ1Þðsþn�nÞðnþs�nÞðnþn�sþ1Þ�1=2ð2nþ1Þ=½2nðnþ1Þ�

aðm,n,�m,n,sÞ ¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ1Þð2nþ1Þð2nþ1Þ=ð4pÞ

p n n s
0 0 0

� 	 n n s
�m m m�m

 !
,

~aðm,n,�m,n,s,s�1Þ ¼ ð�1Þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sþ1Þð2nþ1Þð2nþ1Þ=ð4pÞ

p n n s
0 0 0

� 	 n n s�1

�m m m�m

 !
:

where

n n p

m m q

 !

is the Winger 3j symbol [12].

Appendix E

Anmðe,oÞ ¼
X1
n ¼ m

anmZmn
mnðe,oÞ,

Bnmðe,oÞ ¼
X1
n ¼ m

bnmZmn
mnðe,oÞ,

Cnmðe,oÞ ¼
X1
n ¼ m

cnmQmn
mnðe,oÞþenmRmn

mnðe,oÞ,

Dnmðe,oÞ ¼
X1
n ¼ m

dnmQmn
mnðe,oÞþ fnmRmn

mnðe,oÞ,

Enmðe,oÞ ¼
X1
n ¼ m

cnmRmn
mnðe,oÞþenmQmn

mnðe,oÞ,

Fnmðe,oÞ ¼
X1
n ¼ m

dnmQmn
mnðe,oÞþ fnmRmn

mnðe,oÞ: (E1)
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